Loading HuntDB...

CVE-2021-47034

MEDIUM
Published 2024-02-28T08:13:42.720Z
Actions:

Expert Analysis

Professional remediation guidance

Get tailored security recommendations from our analyst team for CVE-2021-47034. We'll provide specific mitigation strategies based on your environment and risk profile.

CVSS Score

V3.1
4.4
/10
CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H
Base Score Metrics
Exploitability: N/A Impact: N/A

EPSS Score

v2023.03.01
0.000
probability
of exploitation in the wild

There is a 0.0% chance that this vulnerability will be exploited in the wild within the next 30 days.

Updated: 2025-01-25
Exploit Probability
Percentile: 0.124
Higher than 12.4% of all CVEs

Attack Vector Metrics

Attack Vector
LOCAL
Attack Complexity
LOW
Privileges Required
HIGH
User Interaction
NONE
Scope
UNCHANGED

Impact Metrics

Confidentiality
NONE
Integrity
NONE
Availability
HIGH

Description

In the Linux kernel, the following vulnerability has been resolved:

powerpc/64s: Fix pte update for kernel memory on radix

When adding a PTE a ptesync is needed to order the update of the PTE
with subsequent accesses otherwise a spurious fault may be raised.

radix__set_pte_at() does not do this for performance gains. For
non-kernel memory this is not an issue as any faults of this kind are
corrected by the page fault handler. For kernel memory these faults
are not handled. The current solution is that there is a ptesync in
flush_cache_vmap() which should be called when mapping from the
vmalloc region.

However, map_kernel_page() does not call flush_cache_vmap(). This is
troublesome in particular for code patching with Strict RWX on radix.
In do_patch_instruction() the page frame that contains the instruction
to be patched is mapped and then immediately patched. With no ordering
or synchronization between setting up the PTE and writing to the page
it is possible for faults.

As the code patching is done using __put_user_asm_goto() the resulting
fault is obscured - but using a normal store instead it can be seen:

BUG: Unable to handle kernel data access on write at 0xc008000008f24a3c
Faulting instruction address: 0xc00000000008bd74
Oops: Kernel access of bad area, sig: 11 [#1]
LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA PowerNV
Modules linked in: nop_module(PO+) [last unloaded: nop_module]
CPU: 4 PID: 757 Comm: sh Tainted: P O 5.10.0-rc5-01361-ge3c1b78c8440-dirty #43
NIP: c00000000008bd74 LR: c00000000008bd50 CTR: c000000000025810
REGS: c000000016f634a0 TRAP: 0300 Tainted: P O (5.10.0-rc5-01361-ge3c1b78c8440-dirty)
MSR: 9000000000009033 <SF,HV,EE,ME,IR,DR,RI,LE> CR: 44002884 XER: 00000000
CFAR: c00000000007c68c DAR: c008000008f24a3c DSISR: 42000000 IRQMASK: 1

This results in the kind of issue reported here:
https://lore.kernel.org/linuxppc-dev/[email protected]/

Chris Riedl suggested a reliable way to reproduce the issue:
$ mount -t debugfs none /sys/kernel/debug
$ (while true; do echo function > /sys/kernel/debug/tracing/current_tracer ; echo nop > /sys/kernel/debug/tracing/current_tracer ; done) &

Turning ftrace on and off does a large amount of code patching which
in usually less then 5min will crash giving a trace like:

ftrace-powerpc: (____ptrval____): replaced (4b473b11) != old (60000000)
------------[ ftrace bug ]------------
ftrace failed to modify
[<c000000000bf8e5c>] napi_busy_loop+0xc/0x390
actual: 11:3b:47:4b
Setting ftrace call site to call ftrace function
ftrace record flags: 80000001
(1)
expected tramp: c00000000006c96c
------------[ cut here ]------------
WARNING: CPU: 4 PID: 809 at kernel/trace/ftrace.c:2065 ftrace_bug+0x28c/0x2e8
Modules linked in: nop_module(PO-) [last unloaded: nop_module]
CPU: 4 PID: 809 Comm: sh Tainted: P O 5.10.0-rc5-01360-gf878ccaf250a #1
NIP: c00000000024f334 LR: c00000000024f330 CTR: c0000000001a5af0
REGS: c000000004c8b760 TRAP: 0700 Tainted: P O (5.10.0-rc5-01360-gf878ccaf250a)
MSR: 900000000282b033 <SF,HV,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 28008848 XER: 20040000
CFAR: c0000000001a9c98 IRQMASK: 0
GPR00: c00000000024f330 c000000004c8b9f0 c000000002770600 0000000000000022
GPR04: 00000000ffff7fff c000000004c8b6d0 0000000000000027 c0000007fe9bcdd8
GPR08: 0000000000000023 ffffffffffffffd8 0000000000000027 c000000002613118
GPR12: 0000000000008000 c0000007fffdca00 0000000000000000 0000000000000000
GPR16: 0000000023ec37c5 0000000000000000 0000000000000000 0000000000000008
GPR20: c000000004c8bc90 c0000000027a2d20 c000000004c8bcd0 c000000002612fe8
GPR24: 0000000000000038 0000000000000030 0000000000000028 0000000000000020
GPR28: c000000000ff1b68 c000000000bf8e5c c00000000312f700 c000000000fbb9b0
NIP ftrace_bug+0x28c/0x2e8
LR ftrace_bug+0x288/0x2e8
Call T
---truncated---

Available Exploits

No exploits available for this CVE.

Related News

No news articles found for this CVE.

Affected Products

GitHub Security Advisories

Community-driven vulnerability intelligence from GitHub

⚠ Unreviewed MODERATE

GHSA-xfgg-h5qg-vvvx

Advisory Details

In the Linux kernel, the following vulnerability has been resolved: powerpc/64s: Fix pte update for kernel memory on radix When adding a PTE a ptesync is needed to order the update of the PTE with subsequent accesses otherwise a spurious fault may be raised. radix__set_pte_at() does not do this for performance gains. For non-kernel memory this is not an issue as any faults of this kind are corrected by the page fault handler. For kernel memory these faults are not handled. The current solution is that there is a ptesync in flush_cache_vmap() which should be called when mapping from the vmalloc region. However, map_kernel_page() does not call flush_cache_vmap(). This is troublesome in particular for code patching with Strict RWX on radix. In do_patch_instruction() the page frame that contains the instruction to be patched is mapped and then immediately patched. With no ordering or synchronization between setting up the PTE and writing to the page it is possible for faults. As the code patching is done using __put_user_asm_goto() the resulting fault is obscured - but using a normal store instead it can be seen: BUG: Unable to handle kernel data access on write at 0xc008000008f24a3c Faulting instruction address: 0xc00000000008bd74 Oops: Kernel access of bad area, sig: 11 [#1] LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA PowerNV Modules linked in: nop_module(PO+) [last unloaded: nop_module] CPU: 4 PID: 757 Comm: sh Tainted: P O 5.10.0-rc5-01361-ge3c1b78c8440-dirty #43 NIP: c00000000008bd74 LR: c00000000008bd50 CTR: c000000000025810 REGS: c000000016f634a0 TRAP: 0300 Tainted: P O (5.10.0-rc5-01361-ge3c1b78c8440-dirty) MSR: 9000000000009033 <SF,HV,EE,ME,IR,DR,RI,LE> CR: 44002884 XER: 00000000 CFAR: c00000000007c68c DAR: c008000008f24a3c DSISR: 42000000 IRQMASK: 1 This results in the kind of issue reported here: https://lore.kernel.org/linuxppc-dev/[email protected]/ Chris Riedl suggested a reliable way to reproduce the issue: $ mount -t debugfs none /sys/kernel/debug $ (while true; do echo function > /sys/kernel/debug/tracing/current_tracer ; echo nop > /sys/kernel/debug/tracing/current_tracer ; done) & Turning ftrace on and off does a large amount of code patching which in usually less then 5min will crash giving a trace like: ftrace-powerpc: (____ptrval____): replaced (4b473b11) != old (60000000) ------------[ ftrace bug ]------------ ftrace failed to modify [<c000000000bf8e5c>] napi_busy_loop+0xc/0x390 actual: 11:3b:47:4b Setting ftrace call site to call ftrace function ftrace record flags: 80000001 (1) expected tramp: c00000000006c96c ------------[ cut here ]------------ WARNING: CPU: 4 PID: 809 at kernel/trace/ftrace.c:2065 ftrace_bug+0x28c/0x2e8 Modules linked in: nop_module(PO-) [last unloaded: nop_module] CPU: 4 PID: 809 Comm: sh Tainted: P O 5.10.0-rc5-01360-gf878ccaf250a #1 NIP: c00000000024f334 LR: c00000000024f330 CTR: c0000000001a5af0 REGS: c000000004c8b760 TRAP: 0700 Tainted: P O (5.10.0-rc5-01360-gf878ccaf250a) MSR: 900000000282b033 <SF,HV,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 28008848 XER: 20040000 CFAR: c0000000001a9c98 IRQMASK: 0 GPR00: c00000000024f330 c000000004c8b9f0 c000000002770600 0000000000000022 GPR04: 00000000ffff7fff c000000004c8b6d0 0000000000000027 c0000007fe9bcdd8 GPR08: 0000000000000023 ffffffffffffffd8 0000000000000027 c000000002613118 GPR12: 0000000000008000 c0000007fffdca00 0000000000000000 0000000000000000 GPR16: 0000000023ec37c5 0000000000000000 0000000000000000 0000000000000008 GPR20: c000000004c8bc90 c0000000027a2d20 c000000004c8bcd0 c000000002612fe8 GPR24: 0000000000000038 0000000000000030 0000000000000028 0000000000000020 GPR28: c000000000ff1b68 c000000000bf8e5c c00000000312f700 c000000000fbb9b0 NIP ftrace_bug+0x28c/0x2e8 LR ftrace_bug+0x288/0x2e8 Call T ---truncated---

CVSS Scoring

CVSS Score

5.0

CVSS Vector

CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H

Advisory provided by GitHub Security Advisory Database. Published: February 28, 2024, Modified: October 31, 2024

References

Published: 2024-02-28T08:13:42.720Z
Last Modified: 2025-05-04T07:02:43.356Z
Copied to clipboard!