CVE-2025-38236
Expert Analysis
Professional remediation guidance
Get tailored security recommendations from our analyst team for CVE-2025-38236. We'll provide specific mitigation strategies based on your environment and risk profile.
Description
In the Linux kernel, the following vulnerability has been resolved:
af_unix: Don't leave consecutive consumed OOB skbs.
Jann Horn reported a use-after-free in unix_stream_read_generic().
The following sequences reproduce the issue:
$ python3
from socket import *
s1, s2 = socketpair(AF_UNIX, SOCK_STREAM)
s1.send(b'x', MSG_OOB)
s2.recv(1, MSG_OOB) # leave a consumed OOB skb
s1.send(b'y', MSG_OOB)
s2.recv(1, MSG_OOB) # leave a consumed OOB skb
s1.send(b'z', MSG_OOB)
s2.recv(1) # recv 'z' illegally
s2.recv(1, MSG_OOB) # access 'z' skb (use-after-free)
Even though a user reads OOB data, the skb holding the data stays on
the recv queue to mark the OOB boundary and break the next recv().
After the last send() in the scenario above, the sk2's recv queue has
2 leading consumed OOB skbs and 1 real OOB skb.
Then, the following happens during the next recv() without MSG_OOB
1. unix_stream_read_generic() peeks the first consumed OOB skb
2. manage_oob() returns the next consumed OOB skb
3. unix_stream_read_generic() fetches the next not-yet-consumed OOB skb
4. unix_stream_read_generic() reads and frees the OOB skb
, and the last recv(MSG_OOB) triggers KASAN splat.
The 3. above occurs because of the SO_PEEK_OFF code, which does not
expect unix_skb_len(skb) to be 0, but this is true for such consumed
OOB skbs.
while (skip >= unix_skb_len(skb)) {
skip -= unix_skb_len(skb);
skb = skb_peek_next(skb, &sk->sk_receive_queue);
...
}
In addition to this use-after-free, there is another issue that
ioctl(SIOCATMARK) does not function properly with consecutive consumed
OOB skbs.
So, nothing good comes out of such a situation.
Instead of complicating manage_oob(), ioctl() handling, and the next
ECONNRESET fix by introducing a loop for consecutive consumed OOB skbs,
let's not leave such consecutive OOB unnecessarily.
Now, while receiving an OOB skb in unix_stream_recv_urg(), if its
previous skb is a consumed OOB skb, it is freed.
[0]:
BUG: KASAN: slab-use-after-free in unix_stream_read_actor (net/unix/af_unix.c:3027)
Read of size 4 at addr ffff888106ef2904 by task python3/315
CPU: 2 UID: 0 PID: 315 Comm: python3 Not tainted 6.16.0-rc1-00407-gec315832f6f9 #8 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-4.fc42 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:122)
print_report (mm/kasan/report.c:409 mm/kasan/report.c:521)
kasan_report (mm/kasan/report.c:636)
unix_stream_read_actor (net/unix/af_unix.c:3027)
unix_stream_read_generic (net/unix/af_unix.c:2708 net/unix/af_unix.c:2847)
unix_stream_recvmsg (net/unix/af_unix.c:3048)
sock_recvmsg (net/socket.c:1063 (discriminator 20) net/socket.c:1085 (discriminator 20))
__sys_recvfrom (net/socket.c:2278)
__x64_sys_recvfrom (net/socket.c:2291 (discriminator 1) net/socket.c:2287 (discriminator 1) net/socket.c:2287 (discriminator 1))
do_syscall_64 (arch/x86/entry/syscall_64.c:63 (discriminator 1) arch/x86/entry/syscall_64.c:94 (discriminator 1))
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
RIP: 0033:0x7f8911fcea06
Code: 5d e8 41 8b 93 08 03 00 00 59 5e 48 83 f8 fc 75 19 83 e2 39 83 fa 08 75 11 e8 26 ff ff ff 66 0f 1f 44 00 00 48 8b 45 10 0f 05 <48> 8b 5d f8 c9 c3 0f 1f 40 00 f3 0f 1e fa 55 48 89 e5 48 83 ec 08
RSP: 002b:00007fffdb0dccb0 EFLAGS: 00000202 ORIG_RAX: 000000000000002d
RAX: ffffffffffffffda RBX: 00007fffdb0dcdc8 RCX: 00007f8911fcea06
RDX: 0000000000000001 RSI: 00007f8911a5e060 RDI: 0000000000000006
RBP: 00007fffdb0dccd0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000202 R12: 00007f89119a7d20
R13: ffffffffc4653600 R14: 0000000000000000 R15: 0000000000000000
</TASK>
Allocated by task 315:
kasan_save_stack (mm/kasan/common.c:48)
kasan_save_track (mm/kasan/common.c:60 (discriminator 1) mm/kasan/common.c:69 (discriminator 1))
__kasan_slab_alloc (mm/kasan/common.c:348)
kmem_cache_alloc_
---truncated---
Available Exploits
Related News
I found that in CVE-2025-38236, many kernel releases are termed as "Not in Release". Does it mean vulnerable or safe?
We have over 1000 of ubuntu devices majority of them running with ubuntu 20.04 LTS with the Linux Kernel version - 5.4.0-216-generic. We also have ubuntu 22,24 devices. The vulnerability CVE-2025-38236 is currently affecting all our devices and I see there is…
Affected Products
EU Vulnerability Database
Monitored by ENISA for EU cybersecurity
ENISA Analysis
In the Linux kernel, the following vulnerability has been resolved:
af_unix: Don't leave consecutive consumed OOB skbs.
Jann Horn reported a use-after-free in unix_stream_read_generic().
The following sequences reproduce the issue:
$ python3
from socket import *
s1, s2 = socketpair(AF_UNIX, SOCK_STREAM)
s1.send(b'x', MSG_OOB)
s2.recv(1, MSG_OOB) # leave a consumed OOB skb
s1.send(b'y', MSG_OOB)
s2.recv(1, MSG_OOB) # leave a consumed OOB skb
s1.send(b'z', MSG_OOB)
s2.recv(1) # recv 'z' illegally
s2.recv(1, MSG_OOB) # access 'z' skb (use-after-free)
Even though a user reads OOB data, the skb holding the data stays on
the recv queue to mark the OOB boundary and break the next recv().
After the last send() in the scenario above, the sk2's recv queue has
2 leading consumed OOB skbs and 1 real OOB skb.
Then, the following happens during the next recv() without MSG_OOB
1. unix_stream_read_generic() peeks the first consumed OOB skb
2. manage_oob() returns the next consumed OOB skb
3. unix_stream_read_generic() fetches the next not-yet-consumed OOB skb
4. unix_stream_read_generic() reads and frees the OOB skb
, and the last recv(MSG_OOB) triggers KASAN splat.
The 3. above occurs because of the SO_PEEK_OFF code, which does not
expect unix_skb_len(skb) to be 0, but this is true for such consumed
OOB skbs.
while (skip >= unix_skb_len(skb)) {
skip -= unix_skb_len(skb);
skb = skb_peek_next(skb, &sk->sk_receive_queue);
...
}
In addition to this use-after-free, there is another issue that
ioctl(SIOCATMARK) does not function properly with consecutive consumed
OOB skbs.
So, nothing good comes out of such a situation.
Instead of complicating manage_oob(), ioctl() handling, and the next
ECONNRESET fix by introducing a loop for consecutive consumed OOB skbs,
let's not leave such consecutive OOB unnecessarily.
Now, while receiving an OOB skb in unix_stream_recv_urg(), if its
previous skb is a consumed OOB skb, it is freed.
[0]:
BUG: KASAN: slab-use-after-free in unix_stream_read_actor (net/unix/af_unix.c:3027)
Read of size 4 at addr ffff888106ef2904 by task python3/315
CPU: 2 UID: 0 PID: 315 Comm: python3 Not tainted 6.16.0-rc1-00407-gec315832f6f9 #8 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-4.fc42 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:122)
print_report (mm/kasan/report.c:409 mm/kasan/report.c:521)
kasan_report (mm/kasan/report.c:636)
unix_stream_read_actor (net/unix/af_unix.c:3027)
unix_stream_read_generic (net/unix/af_unix.c:2708 net/unix/af_unix.c:2847)
unix_stream_recvmsg (net/unix/af_unix.c:3048)
sock_recvmsg (net/socket.c:1063 (discriminator 20) net/socket.c:1085 (discriminator 20))
__sys_recvfrom (net/socket.c:2278)
__x64_sys_recvfrom (net/socket.c:2291 (discriminator 1) net/socket.c:2287 (discriminator 1) net/socket.c:2287 (discriminator 1))
do_syscall_64 (arch/x86/entry/syscall_64.c:63 (discriminator 1) arch/x86/entry/syscall_64.c:94 (discriminator 1))
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
RIP: 0033:0x7f8911fcea06
Code: 5d e8 41 8b 93 08 03 00 00 59 5e 48 83 f8 fc 75 19 83 e2 39 83 fa 08 75 11 e8 26 ff ff ff 66 0f 1f 44 00 00 48 8b 45 10 0f 05 <48> 8b 5d f8 c9 c3 0f 1f 40 00 f3 0f 1e fa 55 48 89 e5 48 83 ec 08
RSP: 002b:00007fffdb0dccb0 EFLAGS: 00000202 ORIG_RAX: 000000000000002d
RAX: ffffffffffffffda RBX: 00007fffdb0dcdc8 RCX: 00007f8911fcea06
RDX: 0000000000000001 RSI: 00007f8911a5e060 RDI: 0000000000000006
RBP: 00007fffdb0dccd0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000202 R12: 00007f89119a7d20
R13: ffffffffc4653600 R14: 0000000000000000 R15: 0000000000000000
</TASK>
Allocated by task 315:
kasan_save_stack (mm/kasan/common.c:48)
kasan_save_track (mm/kasan/common.c:60 (discriminator 1) mm/kasan/common.c:69 (discriminator 1))
__kasan_slab_alloc (mm/kasan/common.c:348)
kmem_cache_alloc_
---truncated---
Affected Products (ENISA)
ENISA Scoring
EPSS Score
ENISA References
Data provided by ENISA EU Vulnerability Database. Last updated: August 9, 2025
Social Media Intelligence
Real-time discussions and threat intelligence from social platforms
🔥 Top 10 Trending CVEs (26/08/2025) Here’s a quick breakdown of the 10 most interesting vulnerabilities trending today: **1. [CVE-2025-55746](https://nvd.nist.gov/vuln/detail/CVE-2025-55746)** - 📝 Directus is a real-time API and App dashboard for managing SQL database content. From 10.8.0 to before 11.9.3, a vulnerability exists in the file update mechanism which allows …
🔥 Top 10 Trending CVEs (25/08/2025) Here’s a quick breakdown of the 10 most interesting vulnerabilities trending today: **1. [CVE-2025-54253](https://nvd.nist.gov/vuln/detail/CVE-2025-54253)** - 📝 Adobe Experience Manager versions 6.5.23 and earlier are affected by a Misconfiguration vulnerability that could result in arbitrary code execution. An attacker could leverage this vulnerability to bypass …
🔥 Top 10 Trending CVEs (24/08/2025) Here’s a quick breakdown of the 10 most interesting vulnerabilities trending today: **1. [CVE-2025-50864](https://nvd.nist.gov/vuln/detail/CVE-2025-50864)** - 📝 An Origin Validation Error in the elysia-cors library thru 1.3.0 allows attackers to bypass Cross-Origin Resource Sharing (CORS) restrictions. The library incorrectly validates the supplied origin by checking …
From Chrome renderer code exec to kernel with MSG_OOB Jann Horn posted an [article](https://googleprojectzero.blogspot.com/2025/08/from-chrome-renderer-code-exec-to-kernel.html) about exploiting CVE-2025-38236, a UAF in the UNIX domain sockets. The article contains many interesting notes and takeaways on writing kernel exploits that work from within the Chrome renderer sandbox.