Loading HuntDB...

Vulnerabilities

CVE-2024-34158

HIGH

Calling Parse on a "// +build" build tag line with deeply nested expressions can cause a panic due to stack exhaustion.

Published Sep 06, 2024

CVE-2024-34156

HIGH

Calling Decoder.Decode on a message which contains deeply nested structures can cause a panic due to stack exhaustion. This is a follow-up to CVE-2022-30635.

Published Sep 06, 2024

CVE-2024-34155

MEDIUM

Calling any of the Parse functions on Go source code which contains deeply nested literals can cause a panic due to stack exhaustion.

Published Sep 06, 2024

CVE-2024-24791

HIGH

The net/http HTTP/1.1 client mishandled the case where a server responds to a request with an "Expect: 100-continue" header with a non-informational (200 or higher) status. This mishandling could leave a client connection in an invalid state, where the next request sent on the connection will fail. An attacker sending a request to a net/http/httputil.ReverseProxy proxy can exploit this mishandling to cause a denial of service by sending "Expect: 100-continue" requests which elicit a non-informational response from the backend. Each such request leaves the proxy with an invalid connection, and causes one subsequent request using that connection to fail.

Published Jul 02, 2024

CVE-2024-24789

MEDIUM

The archive/zip package's handling of certain types of invalid zip files differs from the behavior of most zip implementations. This misalignment could be exploited to create an zip file with contents that vary depending on the implementation reading the file. The archive/zip package now rejects files containing these errors.

Published Jun 05, 2024

CVE-2024-24790

UNKNOWN

The various Is methods (IsPrivate, IsLoopback, etc) did not work as expected for IPv4-mapped IPv6 addresses, returning false for addresses which would return true in their traditional IPv4 forms.

Published Jun 05, 2024

CVE-2024-24788

MEDIUM

A malformed DNS message in response to a query can cause the Lookup functions to get stuck in an infinite loop.

Published May 08, 2024

CVE-2023-45288

UNKNOWN

An attacker may cause an HTTP/2 endpoint to read arbitrary amounts of header data by sending an excessive number of CONTINUATION frames. Maintaining HPACK state requires parsing and processing all HEADERS and CONTINUATION frames on a connection. When a request's headers exceed MaxHeaderBytes, no memory is allocated to store the excess headers, but they are still parsed. This permits an attacker to cause an HTTP/2 endpoint to read arbitrary amounts of header data, all associated with a request which is going to be rejected. These headers can include Huffman-encoded data which is significantly more expensive for the receiver to decode than for an attacker to send. The fix sets a limit on the amount of excess header frames we will process before closing a connection.

Published Apr 04, 2024

CVE-2024-24785

MEDIUM

If errors returned from MarshalJSON methods contain user controlled data, they may be used to break the contextual auto-escaping behavior of the html/template package, allowing for subsequent actions to inject unexpected content into templates.

Published Mar 05, 2024

CVE-2024-24784

UNKNOWN

The ParseAddressList function incorrectly handles comments (text within parentheses) within display names. Since this is a misalignment with conforming address parsers, it can result in different trust decisions being made by programs using different parsers.

Published Mar 05, 2024

CVE-2023-45289

MEDIUM

When following an HTTP redirect to a domain which is not a subdomain match or exact match of the initial domain, an http.Client does not forward sensitive headers such as "Authorization" or "Cookie". For example, a redirect from foo.com to www.foo.com will forward the Authorization header, but a redirect to bar.com will not. A maliciously crafted HTTP redirect could cause sensitive headers to be unexpectedly forwarded.

Published Mar 05, 2024

CVE-2023-45290

MEDIUM

When parsing a multipart form (either explicitly with Request.ParseMultipartForm or implicitly with Request.FormValue, Request.PostFormValue, or Request.FormFile), limits on the total size of the parsed form were not applied to the memory consumed while reading a single form line. This permits a maliciously crafted input containing very long lines to cause allocation of arbitrarily large amounts of memory, potentially leading to memory exhaustion. With fix, the ParseMultipartForm function now correctly limits the maximum size of form lines.

Published Mar 05, 2024

CVE-2024-24783

MEDIUM

Verifying a certificate chain which contains a certificate with an unknown public key algorithm will cause Certificate.Verify to panic. This affects all crypto/tls clients, and servers that set Config.ClientAuth to VerifyClientCertIfGiven or RequireAndVerifyClientCert. The default behavior is for TLS servers to not verify client certificates.

Published Mar 05, 2024

CVE-2023-39326

UNKNOWN

A malicious HTTP sender can use chunk extensions to cause a receiver reading from a request or response body to read many more bytes from the network than are in the body. A malicious HTTP client can further exploit this to cause a server to automatically read a large amount of data (up to about 1GiB) when a handler fails to read the entire body of a request. Chunk extensions are a little-used HTTP feature which permit including additional metadata in a request or response body sent using the chunked encoding. The net/http chunked encoding reader discards this metadata. A sender can exploit this by inserting a large metadata segment with each byte transferred. The chunk reader now produces an error if the ratio of real body to encoded bytes grows too small.

Published Dec 06, 2023

CVE-2023-45287

UNKNOWN

Before Go 1.20, the RSA based TLS key exchanges used the math/big library, which is not constant time. RSA blinding was applied to prevent timing attacks, but analysis shows this may not have been fully effective. In particular it appears as if the removal of PKCS#1 padding may leak timing information, which in turn could be used to recover session key bits. In Go 1.20, the crypto/tls library switched to a fully constant time RSA implementation, which we do not believe exhibits any timing side channels.

Published Dec 05, 2023

CVE-2023-45284

UNKNOWN

On Windows, The IsLocal function does not correctly detect reserved device names in some cases. Reserved names followed by spaces, such as "COM1 ", and reserved names "COM" and "LPT" followed by superscript 1, 2, or 3, are incorrectly reported as local. With fix, IsLocal now correctly reports these names as non-local.

Published Nov 09, 2023

CVE-2023-45283

UNKNOWN

The filepath package does not recognize paths with a \??\ prefix as special. On Windows, a path beginning with \??\ is a Root Local Device path equivalent to a path beginning with \\?\. Paths with a \??\ prefix may be used to access arbitrary locations on the system. For example, the path \??\c:\x is equivalent to the more common path c:\x. Before fix, Clean could convert a rooted path such as \a\..\??\b into the root local device path \??\b. Clean will now convert this to .\??\b. Similarly, Join(\, ??, b) could convert a seemingly innocent sequence of path elements into the root local device path \??\b. Join will now convert this to \.\??\b. In addition, with fix, IsAbs now correctly reports paths beginning with \??\ as absolute, and VolumeName correctly reports the \??\ prefix as a volume name. UPDATE: Go 1.20.11 and Go 1.21.4 inadvertently changed the definition of the volume name in Windows paths starting with \?, resulting in filepath.Clean(\?\c:) returning \?\c: rather than \?\c:\ (among other effects). The previous behavior has been restored.

Published Nov 09, 2023

CVE-2023-39325

UNKNOWN

A malicious HTTP/2 client which rapidly creates requests and immediately resets them can cause excessive server resource consumption. While the total number of requests is bounded by the http2.Server.MaxConcurrentStreams setting, resetting an in-progress request allows the attacker to create a new request while the existing one is still executing. With the fix applied, HTTP/2 servers now bound the number of simultaneously executing handler goroutines to the stream concurrency limit (MaxConcurrentStreams). New requests arriving when at the limit (which can only happen after the client has reset an existing, in-flight request) will be queued until a handler exits. If the request queue grows too large, the server will terminate the connection. This issue is also fixed in golang.org/x/net/http2 for users manually configuring HTTP/2. The default stream concurrency limit is 250 streams (requests) per HTTP/2 connection. This value may be adjusted using the golang.org/x/net/http2 package; see the Server.MaxConcurrentStreams setting and the ConfigureServer function.

Published Oct 11, 2023

CVE-2023-39322

UNKNOWN

QUIC connections do not set an upper bound on the amount of data buffered when reading post-handshake messages, allowing a malicious QUIC connection to cause unbounded memory growth. With fix, connections now consistently reject messages larger than 65KiB in size.

Published Sep 08, 2023

CVE-2023-39321

UNKNOWN

Processing an incomplete post-handshake message for a QUIC connection can cause a panic.

Published Sep 08, 2023

CVE-2023-39319

UNKNOWN

The html/template package does not apply the proper rules for handling occurrences of "<script", "<!--", and "</script" within JS literals in <script> contexts. This may cause the template parser to improperly consider script contexts to be terminated early, causing actions to be improperly escaped. This could be leveraged to perform an XSS attack.

Published Sep 08, 2023

CVE-2023-39318

UNKNOWN

The html/template package does not properly handle HTML-like "" comment tokens, nor hashbang "#!" comment tokens, in <script> contexts. This may cause the template parser to improperly interpret the contents of <script> contexts, causing actions to be improperly escaped. This may be leveraged to perform an XSS attack.

Published Sep 08, 2023

CVE-2023-29409

UNKNOWN

Extremely large RSA keys in certificate chains can cause a client/server to expend significant CPU time verifying signatures. With fix, the size of RSA keys transmitted during handshakes is restricted to <= 8192 bits. Based on a survey of publicly trusted RSA keys, there are currently only three certificates in circulation with keys larger than this, and all three appear to be test certificates that are not actively deployed. It is possible there are larger keys in use in private PKIs, but we target the web PKI, so causing breakage here in the interests of increasing the default safety of users of crypto/tls seems reasonable.

Published Aug 02, 2023

CVE-2023-29406

UNKNOWN

The HTTP/1 client does not fully validate the contents of the Host header. A maliciously crafted Host header can inject additional headers or entire requests. With fix, the HTTP/1 client now refuses to send requests containing an invalid Request.Host or Request.URL.Host value.

Published Jul 11, 2023

CVE-2023-29403

UNKNOWN

On Unix platforms, the Go runtime does not behave differently when a binary is run with the setuid/setgid bits. This can be dangerous in certain cases, such as when dumping memory state, or assuming the status of standard i/o file descriptors. If a setuid/setgid binary is executed with standard I/O file descriptors closed, opening any files can result in unexpected content being read or written with elevated privileges. Similarly, if a setuid/setgid program is terminated, either via panic or signal, it may leak the contents of its registers.

Published Jun 08, 2023

CVE-2023-24539

UNKNOWN

Angle brackets (<>) are not considered dangerous characters when inserted into CSS contexts. Templates containing multiple actions separated by a '/' character can result in unexpectedly closing the CSS context and allowing for injection of unexpected HTML, if executed with untrusted input.

Published May 11, 2023

CVE-2023-24540

UNKNOWN

Not all valid JavaScript whitespace characters are considered to be whitespace. Templates containing whitespace characters outside of the character set "\t\n\f\r\u0020\u2028\u2029" in JavaScript contexts that also contain actions may not be properly sanitized during execution.

Published May 11, 2023

CVE-2023-29400

UNKNOWN

Templates containing actions in unquoted HTML attributes (e.g. "attr={{.}}") executed with empty input can result in output with unexpected results when parsed due to HTML normalization rules. This may allow injection of arbitrary attributes into tags.

Published May 11, 2023

CVE-2023-24537

UNKNOWN

Calling any of the Parse functions on Go source code which contains //line directives with very large line numbers can cause an infinite loop due to integer overflow.

Published Apr 06, 2023

CVE-2023-24538

UNKNOWN

Templates do not properly consider backticks (`) as Javascript string delimiters, and do not escape them as expected. Backticks are used, since ES6, for JS template literals. If a template contains a Go template action within a Javascript template literal, the contents of the action can be used to terminate the literal, injecting arbitrary Javascript code into the Go template. As ES6 template literals are rather complex, and themselves can do string interpolation, the decision was made to simply disallow Go template actions from being used inside of them (e.g. "var a = {{.}}"), since there is no obviously safe way to allow this behavior. This takes the same approach as github.com/google/safehtml. With fix, Template.Parse returns an Error when it encounters templates like this, with an ErrorCode of value 12. This ErrorCode is currently unexported, but will be exported in the release of Go 1.21. Users who rely on the previous behavior can re-enable it using the GODEBUG flag jstmpllitinterp=1, with the caveat that backticks will now be escaped. This should be used with caution.

Published Apr 06, 2023

CVE-2023-24534

UNKNOWN

HTTP and MIME header parsing can allocate large amounts of memory, even when parsing small inputs, potentially leading to a denial of service. Certain unusual patterns of input data can cause the common function used to parse HTTP and MIME headers to allocate substantially more memory than required to hold the parsed headers. An attacker can exploit this behavior to cause an HTTP server to allocate large amounts of memory from a small request, potentially leading to memory exhaustion and a denial of service. With fix, header parsing now correctly allocates only the memory required to hold parsed headers.

Published Apr 06, 2023

CVE-2023-24536

UNKNOWN

Multipart form parsing can consume large amounts of CPU and memory when processing form inputs containing very large numbers of parts. This stems from several causes: 1. mime/multipart.Reader.ReadForm limits the total memory a parsed multipart form can consume. ReadForm can undercount the amount of memory consumed, leading it to accept larger inputs than intended. 2. Limiting total memory does not account for increased pressure on the garbage collector from large numbers of small allocations in forms with many parts. 3. ReadForm can allocate a large number of short-lived buffers, further increasing pressure on the garbage collector. The combination of these factors can permit an attacker to cause an program that parses multipart forms to consume large amounts of CPU and memory, potentially resulting in a denial of service. This affects programs that use mime/multipart.Reader.ReadForm, as well as form parsing in the net/http package with the Request methods FormFile, FormValue, ParseMultipartForm, and PostFormValue. With fix, ReadForm now does a better job of estimating the memory consumption of parsed forms, and performs many fewer short-lived allocations. In addition, the fixed mime/multipart.Reader imposes the following limits on the size of parsed forms: 1. Forms parsed with ReadForm may contain no more than 1000 parts. This limit may be adjusted with the environment variable GODEBUG=multipartmaxparts=. 2. Form parts parsed with NextPart and NextRawPart may contain no more than 10,000 header fields. In addition, forms parsed with ReadForm may contain no more than 10,000 header fields across all parts. This limit may be adjusted with the environment variable GODEBUG=multipartmaxheaders=.

Published Apr 06, 2023

CVE-2023-24532

UNKNOWN

The ScalarMult and ScalarBaseMult methods of the P256 Curve may return an incorrect result if called with some specific unreduced scalars (a scalar larger than the order of the curve). This does not impact usages of crypto/ecdsa or crypto/ecdh.

Published Mar 08, 2023

CVE-2022-41723

UNKNOWN

A maliciously crafted HTTP/2 stream could cause excessive CPU consumption in the HPACK decoder, sufficient to cause a denial of service from a small number of small requests.

Published Feb 28, 2023

CVE-2022-41724

UNKNOWN

Large handshake records may cause panics in crypto/tls. Both clients and servers may send large TLS handshake records which cause servers and clients, respectively, to panic when attempting to construct responses. This affects all TLS 1.3 clients, TLS 1.2 clients which explicitly enable session resumption (by setting Config.ClientSessionCache to a non-nil value), and TLS 1.3 servers which request client certificates (by setting Config.ClientAuth >= RequestClientCert).

Published Feb 28, 2023

CVE-2022-41725

UNKNOWN

A denial of service is possible from excessive resource consumption in net/http and mime/multipart. Multipart form parsing with mime/multipart.Reader.ReadForm can consume largely unlimited amounts of memory and disk files. This also affects form parsing in the net/http package with the Request methods FormFile, FormValue, ParseMultipartForm, and PostFormValue. ReadForm takes a maxMemory parameter, and is documented as storing "up to maxMemory bytes +10MB (reserved for non-file parts) in memory". File parts which cannot be stored in memory are stored on disk in temporary files. The unconfigurable 10MB reserved for non-file parts is excessively large and can potentially open a denial of service vector on its own. However, ReadForm did not properly account for all memory consumed by a parsed form, such as map entry overhead, part names, and MIME headers, permitting a maliciously crafted form to consume well over 10MB. In addition, ReadForm contained no limit on the number of disk files created, permitting a relatively small request body to create a large number of disk temporary files. With fix, ReadForm now properly accounts for various forms of memory overhead, and should now stay within its documented limit of 10MB + maxMemory bytes of memory consumption. Users should still be aware that this limit is high and may still be hazardous. In addition, ReadForm now creates at most one on-disk temporary file, combining multiple form parts into a single temporary file. The mime/multipart.File interface type's documentation states, "If stored on disk, the File's underlying concrete type will be an *os.File.". This is no longer the case when a form contains more than one file part, due to this coalescing of parts into a single file. The previous behavior of using distinct files for each form part may be reenabled with the environment variable GODEBUG=multipartfiles=distinct. Users should be aware that multipart.ReadForm and the http.Request methods that call it do not limit the amount of disk consumed by temporary files. Callers can limit the size of form data with http.MaxBytesReader.

Published Feb 28, 2023

CVE-2022-41722

UNKNOWN

A path traversal vulnerability exists in filepath.Clean on Windows. On Windows, the filepath.Clean function could transform an invalid path such as "a/../c:/b" into the valid path "c:\b". This transformation of a relative (if invalid) path into an absolute path could enable a directory traversal attack. After fix, the filepath.Clean function transforms this path into the relative (but still invalid) path ".\c:\b".

Published Feb 28, 2023

CVE-2022-41717

UNKNOWN

An attacker can cause excessive memory growth in a Go server accepting HTTP/2 requests. HTTP/2 server connections contain a cache of HTTP header keys sent by the client. While the total number of entries in this cache is capped, an attacker sending very large keys can cause the server to allocate approximately 64 MiB per open connection.

Published Dec 08, 2022

CVE-2022-41720

UNKNOWN

On Windows, restricted files can be accessed via os.DirFS and http.Dir. The os.DirFS function and http.Dir type provide access to a tree of files rooted at a given directory. These functions permit access to Windows device files under that root. For example, os.DirFS("C:/tmp").Open("COM1") opens the COM1 device. Both os.DirFS and http.Dir only provide read-only filesystem access. In addition, on Windows, an os.DirFS for the directory (the root of the current drive) can permit a maliciously crafted path to escape from the drive and access any path on the system. With fix applied, the behavior of os.DirFS("") has changed. Previously, an empty root was treated equivalently to "/", so os.DirFS("").Open("tmp") would open the path "/tmp". This now returns an error.

Published Dec 07, 2022

CVE-2022-41716

UNKNOWN

Due to unsanitized NUL values, attackers may be able to maliciously set environment variables on Windows. In syscall.StartProcess and os/exec.Cmd, invalid environment variable values containing NUL values are not properly checked for. A malicious environment variable value can exploit this behavior to set a value for a different environment variable. For example, the environment variable string "A=B\x00C=D" sets the variables "A=B" and "C=D".

Published Nov 02, 2022

CVE-2022-2880

UNKNOWN

Requests forwarded by ReverseProxy include the raw query parameters from the inbound request, including unparsable parameters rejected by net/http. This could permit query parameter smuggling when a Go proxy forwards a parameter with an unparsable value. After fix, ReverseProxy sanitizes the query parameters in the forwarded query when the outbound request's Form field is set after the ReverseProxy. Director function returns, indicating that the proxy has parsed the query parameters. Proxies which do not parse query parameters continue to forward the original query parameters unchanged.

Published Oct 14, 2022

CVE-2022-41715

UNKNOWN

Programs which compile regular expressions from untrusted sources may be vulnerable to memory exhaustion or denial of service. The parsed regexp representation is linear in the size of the input, but in some cases the constant factor can be as high as 40,000, making relatively small regexps consume much larger amounts of memory. After fix, each regexp being parsed is limited to a 256 MB memory footprint. Regular expressions whose representation would use more space than that are rejected. Normal use of regular expressions is unaffected.

Published Oct 14, 2022

CVE-2022-2879

UNKNOWN

Reader.Read does not set a limit on the maximum size of file headers. A maliciously crafted archive could cause Read to allocate unbounded amounts of memory, potentially causing resource exhaustion or panics. After fix, Reader.Read limits the maximum size of header blocks to 1 MiB.

Published Oct 14, 2022

CVE-2022-32190

UNKNOWN

JoinPath and URL.JoinPath do not remove ../ path elements appended to a relative path. For example, JoinPath("https://go.dev", "../go") returns the URL "https://go.dev/../go", despite the JoinPath documentation stating that ../ path elements are removed from the result.

Published Sep 13, 2022

CVE-2022-32148

UNKNOWN

Improper exposure of client IP addresses in net/http before Go 1.17.12 and Go 1.18.4 can be triggered by calling httputil.ReverseProxy.ServeHTTP with a Request.Header map containing a nil value for the X-Forwarded-For header, which causes ReverseProxy to set the client IP as the value of the X-Forwarded-For header.

Published Aug 09, 2022

CVE-2022-1962

UNKNOWN

Uncontrolled recursion in the Parse functions in go/parser before Go 1.17.12 and Go 1.18.4 allow an attacker to cause a panic due to stack exhaustion via deeply nested types or declarations.

Published Aug 09, 2022

CVE-2022-30580

UNKNOWN

Code injection in Cmd.Start in os/exec before Go 1.17.11 and Go 1.18.3 allows execution of any binaries in the working directory named either "..com" or "..exe" by calling Cmd.Run, Cmd.Start, Cmd.Output, or Cmd.CombinedOutput when Cmd.Path is unset.

Published Aug 09, 2022

CVE-2022-32189

UNKNOWN

A too-short encoded message can cause a panic in Float.GobDecode and Rat GobDecode in math/big in Go before 1.17.13 and 1.18.5, potentially allowing a denial of service.

Published Aug 09, 2022

CVE-2022-30629

UNKNOWN

Non-random values for ticket_age_add in session tickets in crypto/tls before Go 1.17.11 and Go 1.18.3 allow an attacker that can observe TLS handshakes to correlate successive connections by comparing ticket ages during session resumption.

Published Aug 09, 2022

CVE-2022-30630

UNKNOWN

Uncontrolled recursion in Glob in io/fs before Go 1.17.12 and Go 1.18.4 allows an attacker to cause a panic due to stack exhaustion via a path which contains a large number of path separators.

Published Aug 09, 2022