Recent CVEs
CVE-2023-43637
Due to the implementation of "deriveVaultKey", prior to version 7.10, the generated vault key would always have the last 16 bytes predetermined to be "arfoobarfoobarfo". This issue happens because "deriveVaultKey" calls "retrieveCloudKey" (which will always return "foobarfoobarfoobarfoobarfoobarfo" as the key), and then merges the 32byte randomly generated key with this key (by takeing 16bytes from each, see "mergeKeys"). This makes the key a lot weaker. This issue does not persist in devices that were initialized on/after version 7.10, but devices that were initialized before that and updated to a newer version still have this issue. Roll an update that enforces the full 32bytes key usage.
CVE-2023-43631
On boot, the Pillar eve container checks for the existence and content of “/config/authorized_keys”. If the file is present, and contains a supported public key, the container will go on to open port 22 and enable sshd with the given keys as the authorized keys for root login. An attacker could easily add their own keys and gain full control over the system without triggering the “measured boot” mechanism implemented by EVE OS, and without marking the device as “UUD” (“Unknown Update Detected”). This is because the “/config” partition is not protected by “measured boot”, it is mutable, and it is not encrypted in any way. An attacker can gain full control over the device without changing the PCR values, thus not triggering the “measured boot” mechanism, and having full access to the vault. Note: This issue was partially fixed in these commits (after disclosure to Zededa), where the config partition measurement was added to PCR13: • aa3501d6c57206ced222c33aea15a9169d629141 • 5fef4d92e75838cc78010edaed5247dfbdae1889. This issue was made viable in version 9.0.0 when the calculation was moved to PCR14 but it was not included in the measured boot.
CVE-2023-43635
Vault Key Sealed With SHA1 PCRs The measured boot solution implemented in EVE OS leans on a PCR locking mechanism. Different parts of the system update different PCR values in the TPM, resulting in a unique value for each PCR entry. These PCRs are then used in order to seal/unseal a key from the TPM which is used to encrypt/decrypt the “vault” directory. This “vault” directory is the most sensitive point in the system and as such, its content should be protected. This mechanism is noted in Zededa’s documentation as the “measured boot” mechanism, designed to protect said “vault”. The code that’s responsible for generating and fetching the key from the TPM assumes that SHA256 PCRs are used in order to seal/unseal the key, and as such their presence is being checked. The issue here is that the key is not sealed using SHA256 PCRs, but using SHA1 PCRs. This leads to several issues: • Machines that have their SHA256 PCRs enabled but SHA1 PCRs disabled, as well as not sealing their keys at all, meaning the “vault” is not protected from an attacker. • SHA1 is considered insecure and reduces the complexity level required to unseal the key in machines which have their SHA1 PCRs enabled. An attacker can very easily retrieve the contents of the “vault”, which will effectively render the “measured boot” mechanism meaningless.